

THE BOOK of ™

JAVASCRIPT
2ND EDITION

A P R A C T I C A L G U I D E T O INTERACTIVE
W E B P A G E S

by thau!

San Francisco

®

W E L C O M E T O J A V A S C R I P T !

Welcome to The Book of JavaScript.
JavaScript is one of the fastest and easiest

ways to make your website truly dynamic—
that is, interactive. If you want to spruce up

tired-looking pages, you’ve got the right book.
This book will give you some ready-made JavaScripts you can implement

immediately on your website, but, more importantly, it will take you step by
step through sample scripts (both hypothetical and real-world examples) so
that you understand how JavaScript works. With this understanding you can
modify existing scripts to fit your specific needs as well as write scripts from
scratch. Your knowledge of JavaScript will grow as you work through the book;
each chapter introduces and explores in depth a new JavaScript topic by high-
lighting its application in real-life situations.

Is JavaScript for You?
If you want a quick, easy way to add interactivity to your website, if the
thought of using complex programming languages intimidates you, or if
you’re interested in programming but simply don’t know where to start,
JavaScript is for you.

2 Chapter 1

JavaScript, a programming language built into your web browser, is one
of the best ways to add interactivity to your website because it’s the only cross-
browser language that works directly with web browsers. Other languages
such as Java, Perl, PHP, and C don’t have direct access to the images, forms,
and windows that make up a web page.

JavaScript is also very easy to learn. You don’t need any special hardware
or software, you don’t need access to a webserver, and you don’t need a degree
in computer science to get things working. All you need is a web browser and
a text editor such as SimpleText or Notepad.

Finally, JavaScript is a complete programming language, so if you want to
learn more about programming, it provides a great introduction. (If you don’t
give a hoot about programming, that’s fine too. There are plenty of places—
including this book and its companion website—where you can get prefab
scripts to cut and paste right into your pages. But you’ll get much more out
of the book by using it as a tool for learning JavaScript programming.)

Is This Book for You?

This book assumes you don’t have any programming background. Even if
you have programmed before, you’ll find enough that’s new in JavaScript to
keep you entertained. One of the best things about JavaScript is that you don’t
have to be a mega-expert to get it working on your web pages right away. You
do need a working knowledge of HTML, however.

The Goals of This Book

The main goal of this book is to get you to the point of writing your own
JavaScripts. An important tool in learning to write scripts is the ability to read
other people’s scripts. JavaScript is a sprawling language, and you can learn
thousands of little tricks from other scripts. In fact, once you’ve finished this
book, you’ll find that viewing the source code of web pages that use JavaScript
is the best way to increase your knowledge.

Each of the following chapters includes JavaScript techniques used in
building professional sites. Along the way, I’ll point out sites that use the
technique described, and by viewing the source code of such sites you’ll soon
see there are many ways to script. Sometimes going through a site’s code
reveals interesting aspects of JavaScript that I don’t cover in this book.

Beyond learning how to write your own JavaScript and read other people’s
scripts, I also want you to learn where to look for additional information on
JavaScript. As I’ve noted, the best place to learn new techniques is to view the
source code of web pages you find interesting. However, several websites also
offer free JavaScripts. I’ll be introducing some of these as we go along, but
here are a few good examples to get you started:

http://www.webmonkey.com/reference/javascript_code_library

http://javascript.internet.com

Welcome to JavaScr ip t ! 3

http://www.scriptsearch.com/JavaScript/Scripts

http://www.javascriptsearch.com

Another good place to get information is a JavaScript reference book.
The Book of JavaScript is primarily a tutorial for learning basic JavaScript and
making your website interactive. It’s not a complete guide to the language,
which includes too many details for even a lengthy introduction to cover.
If you’re planning to become a true JavaScript master, I suggest picking
up JavaScript: The Definitive Guide by David Flanagan (O’Reilly, 2006) after
making your way through this book. The last 500 or so pages of Flanagan’s
book list every JavaScript command and the browsers in which it works.

What Can JavaScript Do?

JavaScript can add interactivity to your web pages in a number of ways. This
book offers many examples of JavaScript’s broad capabilities. The following
are just two examples that illustrate what you can do with JavaScript.

The first example (Figure 1-1) is a flashing grid of colored squares
(to get the full effect, browse to http://www.bookofjavascript.com/Chapter01/
Fig01-01.html), created by a fellow named Taylor way back in 1996. Flashy,
isn’t it? In this example, a JavaScript function changes the color of a randomly
chosen square in the grid every second or so.

Figure 1-1: A demonstration of JavaScript’s artful abilities

4 Chapter 1

Mousing over one of the five icons below the squares (number, plus sign,
square, letter, and horizontal line) tells the page to use a new set of images
on the grid. For example, mousing over the number icon tells the JavaScript
to start replacing the squares with 1s and 0s. This page illustrates four impor-
tant JavaScript features you’ll learn about throughout the book:

How to change images on a web page

How to affect web pages over time

How to add randomness to web pages

How to dynamically change what’s happening on a web page based on
an action taken by someone viewing the page

Although Taylor’s demo is beautiful, it’s not the most practical applica-
tion of JavaScript. Figure 1-2 (available at http://www.bookofjavascript.com/
Chapter01/Fig01-02.html) shows you a much more practical use of JavaScript
that calculates the weight of a fish based on its length. Enter the length and
type of fish, and the JavaScript calculates the fish’s weight. This fishy code
demonstrates JavaScript’s ability to read what a visitor has entered into a
form, perform a mathematical calculation based on the input, and provide
feedback by displaying the results in another part of the form. You may not
find calculating a fish’s weight a particularly useful application of JavaScript
either, but you can use the same skills to calculate a monthly payment on a
loan (Chapter 7), score a quiz (Chapter 10), or verify that a visitor has provided
a valid email address (Chapter 11).

Figure 1-2: How much does my fish weigh?

Welcome to JavaScr ip t ! 5

These are just two examples of the many features JavaScript can add
to your websites. Each chapter will cover at least one new application. If
you want a preview of what you’ll learn, read the first page or so of each
chapter.

What Are the Alternatives to JavaScript?

Several other programming languages can add interactivity to web pages, but
they all differ from JavaScript in important ways. The four main alternatives
are CGI scripting, Java, VBScript, and Flash.

CGI Scripting

Before JavaScript, using CGI scripts was the only way to make web pages do
more than hyperlink to other web pages containing fixed text. CGI stands for
Common Gateway Interface. It’s a protocol that allows a web browser running on
your computer to communicate with programs running on webservers. It is
most often used with HTML forms—pages where the user enters informa-
tion and submits it for processing. For example, the user might see a web
page containing places for entering the length and selecting the type of a
fish, as well as a Compute button. When the user keys in the length, selects
the type, and clicks the button, the information is sent to a CGI script on the
server. The CGI script (which is probably written in a programming language
like Perl, PHP, or C) receives the information, calculates the weight of the
fish, and sends the answer, coded as an HTML page, back to the browser.

CGI scripts are very powerful, but because they reside on webservers,
they have some drawbacks.

The Need for Back-and-Forth Communication

First, the connection between your web browser and the webserver limits
the speed of your web page’s interactivity. This may not sound like a big
problem, but imagine the following scenario: You’re filling out an order
form with a dozen entry fields including name, address, and phone number
(see Figure 1-3), but you forget to fill out the phone number and address
fields. When you click the Submit button to send the information across the
Internet to the webserver, the CGI script sees that you didn’t fill out the form
completely and sends a message back across the Internet requesting that you
finish the job. This cycle could take quite a while over a slow connection. If you
fill out the form incorrectly again, you have to wait through another cycle.
People find this process tiresome, especially if they’re customers who want
their orders processed quickly.

With JavaScript, though, the programs you write run in the browser itself.
This means that the browser can make sure you’ve filled out the form correctly
before sending the form’s contents to the webserver. JavaScript thus reduces
the time your information spends traveling between the browser and the
server.

6 Chapter 1

Figure 1-3: A simple order form

Server Overload by Concurrent Access

Another drawback to CGI scripts is that a webserver running a CGI program
can get bogged down if too many people call the script simultaneously (for
example, if too many fishermen decided to run the weight calculator and
click the Compute button at the same time). Serving up HTML pages is
pretty easy for a webserver. However, some CGI scripts take a long time to
run on a machine, and each time someone calls the script, the server has to
start up another copy of it. As more and more people try to run the script,
the server slows down progressively. If a thousand people are trying to run the
script at once, the server might take so long to respond that either the user
or the browser gives up, thinking the server is dead. This problem doesn’t
exist in JavaScript because its scripts run on each visitor’s web browser—not
on the webserver.

Security Restrictions

A third problem with CGI scripts is that not everyone has access to the parts
of a webserver that can run CGI scripts. Since a CGI script can conceivably
crash a webserver or exploit security flaws, system administrators generally
guard these areas, only allowing fellow administrators access. If you have
Internet access through an Internet service provider (ISP), you may not be
allowed to write CGI scripts. If you are designing web pages for a company,
you may not be given access to the CGI-enabled areas of the webserver.

Welcome to JavaScr ip t ! 7

JavaScript, on the other hand, goes right into the HTML of a web page.
If you can write a web page, you can put JavaScript in the page without
permission from recalcitrant administrators.

VBScript

The language most similar to JavaScript is Microsoft’s proprietary language,
VBScript (VB stands for Visual Basic). Like JavaScript, VBScript runs on your
web browser and adds interactivity to web pages. However, VBScript works
only on computers running Internet Explorer (IE) on Microsoft Windows, so
unless you want to restrict your readership to people who use IE on Windows,
you should go with JavaScript.

Java

Although JavaScript and Java have similar names, they aren’t the same.
Netscape, now a part of AOL, initially created JavaScript to provide inter-
activity for web pages, whereas Sun Microsystems wrote Java as a general
programming language that works on all kinds of operating systems.

Flash

Flash is a tool from Macromedia developed to add animation and interactivity
to websites. Almost all modern browsers can view Flash animations or can
easily download the Flash plug-in. Flash animations look great, and a basic
Flash animation requires no programming skills at all. To create Flash ani-
mations, however, you must purchase a Flash product from Macromedia.

While some people consider Flash and JavaScript to be competitors, that’s
not the case. In fact, you can call JavaScript programs from Flash, and you
can manipulate Flash animations using JavaScript. Web page designers will
often blend the two, using Flash for animations and JavaScript for inter-
activity that does not involve animations. Flash animations can also be made
more interactive using a language called ActionScript, which is almost exactly
like JavaScript.

JavaScript’s Limitations

Yes, JavaScript does have limitations, but these limitations are natural and
unavoidable by-products of its main purpose: to add interactivity to your
web pages.

JavaScript Can’t Talk to Servers

One of JavaScript’s drawbacks is also its main strength: It works entirely
within the web browser. As we’ve seen, this cuts down on the amount of time
your browser spends communicating with a webserver. On the other hand,
this also means that JavaScript can’t communicate with other machines and
therefore can’t handle some server tasks you may need to do.

8 Chapter 1

For example, JavaScript can’t aggregate information collected from your
users. If you want to write a survey that asks your visitors a couple of questions,
stores their answers in a database, and sends a thank-you email when they
finish, you’ll have to use a program that runs on your webserver. As we’ll see
in Chapter 7, JavaScript can make the survey run more smoothly, but once a
visitor has finished filling out the questions, JavaScript can’t store the informa-
tion on the server, because it can’t contact the server. In order to store the
survey information, you need to use a program that runs on a webserver. Send-
ing email with JavaScript is also impossible, because to send email JavaScript
would have to contact a mail server. Again, you need a server-side program
for this job.

Although JavaScript can’t directly control programs that run on web-
servers, it can ask webservers to run programs, and it can send information to
those programs. We’ll see examples of that in Chapters 7 and 14, and we’ll
get a taste for writing server-side programs in Chapters 15 and 16.

JavaScript Can’t Create Graphics
Another of JavaScript’s limitations is that it can’t create its own graphics.
Whereas more complicated languages can draw pictures, JavaScript can only
manipulate existing pictures (that is, GIF or JPEG files). Luckily, because
JavaScript can manipulate created images in so many ways, you shouldn’t
find this too limiting.

JavaScript Works Differently in Different Browsers
Perhaps the most annoying problem with JavaScript is that it works somewhat
differently in different browsers. JavaScript was introduced in 1996 by Netscape
in version 2 of Netscape Navigator. Since then, JavaScript has changed, and
every browser implements a slightly different version of it—often adding
browser-specific features. Luckily, starting in the late 1990s, the European
Computer Manufacturers Association (ECMA) began publishing standards for
JavaScript, which they call ECMAScript. About 99 percent of all browsers being
used today comply with at least version 3 of the ECMA standard. These include
Internet Explorer version 5.5 and later, Netscape version 6 and later, Mozilla,
Firefox, all versions of Safari, and Opera version 5 and later. Because almost
all browsers currently in use adhere to version 3 of the ECMA standard, I’ll
be using that as the standard version of JavaScript in the book. Where incom-
patibilities between browsers arise, I’ll point them out.

Getting Started
We’re about ready to begin. To write JavaScripts, you need a web browser and
a text editor. Any text editor will do: Notepad or WordPad in Windows and
SimpleText on a Macintosh are the simplest choices. Microsoft Word or
Corel’s WordPerfect will work as well. You can also use a text editor such
as BBEdit or HomeSite, which are designed to work with HTML and
JavaScript.

Some tools for building websites will actually write JavaScript for you—
for example, Adobe’s Dreamweaver and GoLive. These tools work fine when

Welcome to JavaScr ip t ! 9

you want to write JavaScripts for common features such as image rollovers
and you know you’ll never want to change them. Unfortunately, the JavaScript
often ends up much longer than necessary, and you may find it difficult to
understand and change to suit your needs. Unless you want a JavaScript that
works exactly like one provided by the package you’ve purchased, you’re often
best off writing scripts by hand. Of course, you can also use one of these tools
to figure out how you want your page to behave and then go back and rewrite
the script to suit your specific needs.

NOTE Always save documents as text only, and end their names with .html or .htm. If you’re
using Microsoft Word or WordPerfect and you don’t save your documents as text-only
HTML or HTM files, both programs will save your documents in formats web browsers
can’t read. If you try to open a web page you’ve written and the browser shows a lot of
weird characters you didn’t put in your document, go back and make sure you’ve saved
it as text only.

Where JavaScript Goes on Your Web Pages

Now let’s get down to some JavaScript basics. Figure 1-4 shows you the
thinnest possible skeleton of an HTML page with JavaScript.

<html>

<head>

<title>JavaScript Skeleton</title>

 <script type = "text/javascript">

// JavaScript can go here!

// But no HTML!

 </script>

</head>

<body>

<script type = "text/javascript">

// JavaScript can go here too!

// But no HTML!

</script>

</body>

</html>

Figure 1-4: An HTML page with JavaScript

In Figure 1-4, you can see the JavaScript between the <script type =
"text/javascript"> and </script> tags in and .

Note that you can also start JavaScript with this <script> tag:

<script language = "JavaScript">

Although this will work in all browsers, it’s better to stick to the official
format:

<script type = "text/javascript">

10 Chapter 1

If you feel like being extra clear, you can explicitly state which version
of JavaScript your script will support. ECMAScript version 3 is also called
JavaScript version 1.5. To tell a browser to run the JavaScript only if it under-
stands JavaScript version 1.5, you can use this <script> tag:

<script type = "text/javascript" language = "JavaScript1.5">

Unfortunately, not all browsers check the language attribute for a
version number, and the ones that don’t check are, of course, the ones that
don’t understand JavaScript 1.5. So those browsers will happily try to run your
JavaScript and will probably generate a JavaScript error. I’ll talk more about
ways to deal with older browsers in the next section and throughout the book.
All in all, I recommend just sticking with <script type = "text/javascript">.

With one exception, which Chapter 4 will cover, all JavaScript goes
between the open <script> and close </script> tags. Furthermore, you can’t
include any HTML between <script> and </script>. Between those tags, your
browser assumes that everything it sees is JavaScript. If it sees HTML in there,
or anything else it can’t interpret as JavaScript, it gets confused and gives you
an error message.

These JavaScript tags can go in either the head (between <head> and
</head>) or the body (between <body> and </body>) of your HTML page.
It doesn’t matter too much where you put them, although you’re generally
best off putting as much JavaScript in the head as possible. That way you
don’t have to look for it all over your web pages.

One final thing worth mentioning here is that the lines that start with two
slashes are JavaScript comments. The browser ignores any text that appears
after two slashes. Documenting your work with comments is extremely impor-
tant, because programming languages aren’t easily understood. The script
you’re writing may make perfect sense while you’re writing it, but a few days
later, when you want to make a little modification, you might spend hours
just figuring out what you wrote the first time. If you comment your code,
you’ll have a better chance to save yourself the hassle of remembering what
you were thinking when you wrote that bizarre code at 2 AM in the midst of
what seemed like an amazingly lucid caffeine haze.

Dealing with Older Browsers

There’s a slight problem with the JavaScript skeleton in Figure 1-4 (besides
the fact that it doesn’t really have any JavaScript in it): Netscape didn’t intro-
duce the <script> tag until version 2.0 of Netscape Navigator, so any browser
released before 1997 won’t recognize the tag.

When a browser sees an HTML tag it doesn’t understand, it just ignores
that tag. That’s generally a good thing. However, a browser that doesn’t
understand JavaScript will write your lines of JavaScript to the browser as
text. Figure 1-5 shows how the JavaScript skeleton in Figure 1-4 would be
displayed in an older browser.

Welcome to JavaScr ipt ! 11

Figure 1-5: What Figure 1-4 would display in an older browser

Although more than 99 percent of the browsers in use today understand
JavaScript, most popular sites (Google, for example) still add lines like
and of Figure 1-6, to hide their JavaScript from browsers that don’t
understand JavaScript.

<script type = "text/javascript">

 <!-- hide me from older browsers

// JavaScript goes here

 // show me -->

</script>

Figure 1-6: Hiding JavaScript from browsers that don’t understand it

The important symbols are the <!-- code in and the // --> comments
in . These weird lines work because in HTML, the <!-- and --> are tags
that mark the beginning and end of an entire block of comments. Older
browsers that don’t recognize the <script> tag see the comment markers
and therefore don’t try to display any of the JavaScript code between them.
In JavaScript, on the other hand, <!-- is the beginning of a comment that
reaches only to the end of that one line, so browsers that understand JavaScript
don’t ignore the rest of the JavaScript between and . The words in the tags
(hide me from older browsers and show me) aren’t important; they’re just there
to help you understand the code better. You can make those whatever you
want or just leave them out entirely. It’s the <!-- and // --> tags that are
important.

This trick may be a bit tough to understand at first. If so, don’t worry—
just remember to put the <!-- tag on its own line right after <script> and
the // --> tag on its own line right before </script>, and people with older
browsers will thank you.

12 Chapter 1

Your First JavaScript

It’s time to run your first JavaScript program. I’ll explain the code in Figure 1-7
in the next chapter, so for now, just type the code into your text editor, save
it as my_first_program.html, and then run it in your browser. If you don’t
want to type it all in, run the example at http://www.bookofjavascript.com/
Chapter01/Fig01-07.html.

<html>

<head>

<title>JavaScript Skeleton</title>

</head>

<body>

<script type = "text/javascript">

<!-- hide me from older browsers

// say Hello, world!

 alert("Hello, world!");

// show me -->

</script>

</body>

</html>

Figure 1-7: Your first JavaScript program

When a browser reads this file, the JavaScript in instructs the browser
to put up a little window with the words Hello, world! in it. Figure 1-8 shows
you what this looks like in a web browser. Traditionally, this is the first
script you write in any programming language. It gets you warmed up
for the fun to come.

Figure 1-8: Window launched by the
“Hello, world!” script

Summary

Congratulations—you’re now on your way to becoming a bona fide
JavaScripter! This chapter has given you all the basic tools you need and
has shown you how to get a very basic JavaScript program running. If you
followed everything here, you now know:

Some of the great things JavaScript can do

How JavaScript compares to CGI scripting, VBScript, Java, and Flash

Welcome to JavaScr ipt ! 13

JavaScript’s main limitations

Where JavaScript goes on the page

How to write JavaScript older browsers won’t misunderstand

Assignment

Try typing Figure 1-7 into a text editor and running it in a web browser. You’ll
find the next chapter’s assignments hard to do if you can’t get Figure 1-7
to work.

If you’re sure you’ve recreated Figure 1-7 exactly and it’s not working,
make sure you’re saving the file as text only. You may also find it helpful to
peruse Chapter 14, which discusses ways to fix broken code. Although you may
not understand everything in that chapter, you may find some helpful tips.

If it’s still not working, try running the version of Figure 1-7 at http://
www.bookofjavascript.com/Chapter01/Fig01-07.html. If that doesn’t work,
you may be using a browser that doesn’t support JavaScript, or your browser
may be set to reject JavaScript. If you’re sure you’re using a browser that
supports JavaScript (Netscape 2.0 and later versions, and Internet Explorer 3.0
and later), check your browser’s options and make sure it’s set to run JavaScript.

Once you’re comfortable with the concepts covered in this chapter, you’ll
be ready to write some code!

U S I N G V A R I A B L E S A N D B U I L T - I N
F U N C T I O N S T O U P D A T E Y O U R W E B

P A G E S A U T O M A T I C A L L Y

With JavaScript you can update the con-
tent of your pages automatically—every day,

every hour, or every second. In this chapter,
I’ll focus on a simple script that automatically

changes the date on your web page.
Along the way you’ll learn:

How JavaScript uses variables to remember simple items such as names
and numbers

How JavaScript keeps track of more complicated items such as dates

How to use JavaScript functions to write information to your web page

Before getting into the nuts and bolts of functions and variables, let’s
take a look at a couple of examples of web pages that automatically update
themselves, starting with the European Space Agency (http://www.esa.int).
As you can see in Figure 2-1, the ESA’s home page shows you the current date.
Rather than change the home page every day, the ESA uses JavaScript to
change the date automatically.

16 Chapter 2

Figure 2-1: Using JavaScript to display the current date

An even more frequently updated page is the home page of the Book of
JavaScript website (http://www.bookofjavascript.com), which updates the
time as well as the date (see Figure 2-2). You don’t have to sit in front of your
computer, updating the dates and times on your websites. JavaScript can set
you free! The ability to write HTML to web pages dynamically is one of
JavaScript’s most powerful features.

Figure 2-2: Dynamically updating the date and time

To understand how to update the date and time on the page, you’ll first
have to learn about variables, strings, and functions. Your homework assign-
ment at the end of this chapter will be to figure out how to add seconds to
the time.

Variables Store Information

Think back to those glorious days of algebra class when you learned about
variables and equations. For example, if x = 2, y = 3, and z = x + y, then z = 5.
In algebra, variables like x, y, and z store or hold the place of numbers. In
JavaScript and other programming languages, variables also store other
kinds of information.

Syntax of Variables
The syntax of variables (the set of rules for defining and using variables) is
slightly different in JavaScript from what it was in your algebra class. Figure 2-3
illustrates the syntax of variables in JavaScript with a silly script that figures
out how many seconds there are in a day.

NOTE Figure 2-3 does not write the results of the JavaScript to the web page—I’ll explain how
to do that in Figure 2-4.

Using Var iables and Bu i l t - in Funct ions to Update Your Web Pages Automat ical ly 17

<html>

<head>

<title>Seconds in a Day</title>

<script type = "text/javascript">

<!-- hide me from older browsers

 var seconds_per_minute = 60;

var minutes_per_hour = 60;

var hours_per_day = 24;

 var seconds_per_day = seconds_per_minute * minutes_per_hour * hours_per_day;

// show me -->

 </script>

</head>

<body>

<h1>Know how many seconds are in a day?</h1>

<h2>I do!</h2>

</body>

</html>

Figure 2-3: Defining and using variables

There’s a lot going on here, so let’s take it line by line. Line is a
statement (a statement in JavaScript is like a sentence in English), and it
says to JavaScript, “Create a variable called seconds_per_minute and set its value
to 60.” Notice that ends with a semicolon. Semicolons in JavaScript are like
periods in English: They mark the end of a statement (for example, one that
defines a variable, as above). As you see more and more statements, you’ll get
the hang of where to place semicolons.

The first word, var, introduces a variable for the first time—you don’t
need to use it after the first instance, no matter how many times you employ
the variable in the script.

NOTE Many people don’t use var in their code. Although most browsers let you get away
without it, it’s always a good idea to put var in front of a variable the first time you use it.
(You’ll see why when I talk about writing your own functions in Chapter 6.)

Naming Variables
Notice that the variable name in is pretty long—unlike algebraic variables,
it’s not just a single letter like x, y, or z. When using variables in JavaScript
(or any programming language), you should give them names that indicate
what piece of information they hold. The variable in stores the number
of seconds in a minute, so I’ve called it seconds_per_minute.

If you name your variables descriptively, your code will be easier to under-
stand while you’re writing it, and much easier to understand when you return
to it later for revision or enhancement. Also, no matter which programming

18 Chapter 2

language you use, you’ll spend about 50 percent of your coding time finding
and getting rid of your mistakes. This is called debugging—and it’s a lot easier
to debug code when the variables have descriptive names. You’ll learn more
about debugging in Chapter 14.

There are four rules for naming variables in JavaScript:

1. The initial character must be a letter, an underscore, or a dollar sign,
but subsequent characters may be numbers as well.

2. No spaces are allowed.

3. Variables are case sensitive, so my_cat is different from My_Cat, which in
turn is different from mY_cAt. As far as the computer is concerned, each
of these would represent a different variable—even if that’s not what
the programmer intended. (You’ll see an example of this in the section
“alert()” on page 22.) To avoid any potential problems with capitaliza-
tion, I use lowercase for all my variables, with underscores (_) where
there would be spaces in ordinary English.

4. You can’t use reserved words. Reserved words are terms used by the
JavaScript language itself. For instance, you’ve seen that the first time
you use a variable, you should precede it with the word var. Because
JavaScript uses the word var to introduce variables, you can’t use var as a
variable name. Different browsers have different reserved words, so the
best thing to do is avoid naming variables with words that seem like terms
JavaScript might use. Most reserved words are fairly short, so using longer,
descriptive variable names keeps you fairly safe. I often call my variables
things like the_cat, or the_date because there are no reserved words that
start with the word the. If you have a JavaScript that you’re certain is correct,
but it isn’t working for some reason, it might be because you’ve used a
reserved word.

Arithmetic with Variables
Line in Figure 2-3 introduces a new variable called seconds_per_day and sets it
equal to the product of the other three variables using an asterisk (*), which
means multiplication. A plus sign (+) for addition, a minus sign (-) for subtrac-
tion, and a slash (/) for division represent the other major arithmetic functions.

When the browser finishes its calculations in our example, it reaches the
end of the JavaScript in the head () and goes down to the body of the
HTML. There it sees two lines of HTML announcing that the page knows
how many seconds there are in a day.

<h1>Know how many seconds are in a day?</h1>
<h2>I do!</h2>

So now you have a page that knows how many seconds there are in a day.
Big deal, right? Wouldn’t it be better if you could tell your visitors what the
answer is? Well, you can, and it’s not very hard.

Using Var iables and Bu i l t - in Funct ions to Update Your Web Pages Automat ical ly 19

Write Here Right Now: Displaying Results

JavaScript uses the write() function to write text to a web page. Figure 2-4 shows
how to use write() to let your visitors know how many seconds there are in a
day. (The new code is in bold.) Figure 2-5 shows the page this code displays.

<html>

<head>

<title>Seconds in a Day</title>

<script type = "text/javascript">

<!-- hide me from older browsers

var seconds_per_minute = 60;

var minutes_per_hour = 60;

var hours_per_day = 24;

var seconds_per_day = seconds_per_minute * minutes_per_hour * hours_per_day;

// show me -->

</script>

</head>

<body>

<h1>My calculations show that . . .</h1>

<script type = "text/javascript">

<!-- hide me from older browsers

 window.document.write("there are ");
window.document.write(seconds_per_day);

window.document.write(" seconds in a day.");

// show me -->

</script>

</body>

</html>

Figure 2-4: Using write() to write to a web page

Figure 2-5: JavaScript’s calculations

20 Chapter 2

Line-by-Line Analysis of Figure 2-4
Line in Figure 2-4 writes the words there are to the web page (only the
words between the quotes appear on the page). Don’t worry about all the
periods and what window and document really mean right now (I’ll cover these
topics in depth in Chapter 4, when we talk about image swaps). For now,
just remember that if you want to write something to a web page, use
window.document.write("whatever");, placing the text you want written to the
page between the quotes. If you don’t use quotes around your text, as in

window.document.write(seconds_per_day);

then JavaScript interprets the text between the parentheses as a variable and
writes whatever is stored in the variable (in this case, seconds_per_day) to the
web page (see Figure 2-6). If you accidentally ask JavaScript to write out a
variable you haven’t defined, you’ll get a JavaScript error.

Be careful not to put quotes around variable names if you want
JavaScript to know you’re talking about a variable. If you add quotes
around the seconds_per_day variable, like this:

window.document.write("seconds_per_day");

then JavaScript will write seconds_per_day to the web page. The way JavaScript
knows the difference between variables and regular text is that regular text
has quotes around it and a variable doesn’t.

Strings
Any series of characters between quotes is called a string. (You’ll be seeing
lots of strings throughout this book.) Strings are a basic type of information,
like numbers—and like numbers, you can assign them to variables.

To assign a string to a variable, you’d write something like this:

var my_name = "thau!";

The word thau! is the string assigned to the variable my_name.
You can stick strings together with a plus sign (+), as shown in the bolded

section of Figure 2-6. This code demonstrates how to write output to your page
using strings.

<html>

<head>

<title>Seconds in a Day</title>

<script type = "text/javascript">

<!-- hide me from older browsers

var seconds_per_minute = 60;

var minutes_per_hour = 60;

var hours_per_day = 24;

var seconds_per_day = seconds_per_minute * minutes_per_hour * hours_per_day;

Using Var iables and Bu i l t - in Funct ions to Update Your Web Pages Automat ical ly 21

// show me -->

</script>

</head>

<body>

<h1>My calculations show that . . .</h1>

<script type = "text/javascript">

<!-- hide me from older browsers

 var first_part = "there are ";

 var last_part = " seconds in a day.";

 var whole_thing = first_part + seconds_per_day + last_part;

window.document.write(whole_thing);

// show me -->

</script>

</body>

</html>

Figure 2-6: Putting strings together

Line-by-Line Analysis of Figure 2-6
Line in Figure 2-6,

var first_part = "there are ";

assigns the string "there are" to the variable first_part. Line ,

var last_part = " seconds in a day.";

sets the variable last_part to the string "seconds in a day." Line glues
together the values stored in first_part, seconds_per_day, and last_part.
The end result is that the variable whole_thing includes the whole string
you want to print to the page, there are 86400 seconds in a day. The
window.document.write() line then writes whole_thing to the web page.

NOTE The methods shown in Figures 2-4 and 2-6 are equally acceptable ways of writing
there are 86400 seconds in a day. However, there are times when storing strings
in variables and then assembling them with the plus sign (+) is clearly the best way
to go. We’ll see a case of this when we finally get to putting the date on a page.

More About Functions

Whereas variables store information, functions process that information.
All functions take the form functionName(). Sometimes there’s some-

thing in the parentheses and sometimes there isn’t. You’ve already seen
one of JavaScript’s many built-in functions, window.document.write(), which

22 Chapter 2

writes whatever lies between the parentheses to the web page. Before diving
into the date functions that you’ll need to write the date to your web page,
I’ll talk about two interesting functions, just so you get the hang of how
functions work.

alert()

One handy function is alert(), which puts a string into a little announcement
box (also called an alert box). Figure 2-7 demonstrates how to call an alert(),
and Figure 2-8 shows what the alert box looks like.

<html>

<head>

<title>An Alert Box</title>

<script type = "text/javascript">

<!-- hide me from older browsers

 alert("This page was written by thau!");

// show me -->

</script>

<body>

 <h1>To code, perchance to function</h1>

</body>

</html>

Figure 2-7: Creating an alert box

The first thing visitors see when they come to the page Figure 2-7
creates is an alert box announcing that I wrote the page (Figure 2-8).
The alert box appears because of , which tells JavaScript to execute its
alert() function.

The alert() function is useful for troubleshooting when your JavaScript
isn’t working correctly. Let’s say you’ve typed in Figure 2-6, but when you run
the code, you see that you must have made a typo—it says there are 0 seconds
in a day instead of 86400. You can use alert() to find out how the different
variables are set before multiplication occurs. The script in Figure 2-9 contains
an error that causes the script to say there are “undefined” seconds in a year;
and to track down the error, I’ve added alert() function statements that tell
you why this problem is occurring.

While the alert box is on the
screen, the browser stops doing any
work. Clicking OK in the alert box
makes it go away and allows the
browser to finish drawing the web
page. In this case, that means writing
the words To code, perchance to function
to the page ().

Figure 2-8: The alert box

Using Var iables and Bu i l t - in Funct ions to Update Your Web Pages Automat ical ly 23

<html>

<head>

<title>Seconds in a Day</title>

<script type = "text/javascript">

<!-- hide me from older browsers

var seconds_per_minute = 60;

var minutes_per_hour = 60;

 var Hours_per_day = 24;

 alert("seconds per minute is: " + seconds_per_minute);

 alert("minutes per hour is: " + minutes_per_hour);

 alert("hours per day is: " + hours_per_day);

 var seconds_per_day = seconds_per_minute * minutes_per_hour * hours_per_day;

// show me -->

</script>

</head>

<body>

<h1>My calculations show that . . .</h1>

<script type = "text/javascript">

<!-- hide me from older browsers

var first_part = "there are ";

var last_part = " seconds in a day.";

var whole_thing = first_part + seconds_per_day + last_part;

window.document.write(whole_thing);

// show me -->

</script>

</body>

</html>

Figure 2-9: Using alert() to find out what’s wrong

Line-by-Line Analysis of Figure 2-9

The problem with this script is in . Notice the accidental capitalization of
the first letter in Hours_per_day. This is what causes the script to misbehave.
Line multiplies the other numbers by the variable hours_per_day, but
hours_per_day was not set—remember, JavaScript considers it a different
variable from Hours_per_day—so JavaScript thinks its value is either 0 or
undefined, depending on your browser. Multiplying anything by 0 results in
0, so the script calculates that there are 0 seconds in a day. The same holds
true for browsers that think hours_per_day is undefined. Multiplying anything

24 Chapter 2

by something undefined results in the answer being undefined, so the browser
will report that there are undefined seconds in a day.

This script is short, making it easy to see the mistake. However, in longer
scripts it’s sometimes hard to figure out what’s wrong. I’ve added , , and
in this example to help diagnose the problem. Each of these statements puts
a variable into an alert box. The alert in will say seconds_per_minute is: 60.
The alert in will say hours_per_day is: 0, or, depending on your browser, the
alert won’t appear at all. Either way, you’ll know there’s a problem with the
hours_per_day variable. If you can’t figure out the mistake by reading the script,
you’ll find this type of information very valuable. Alerts are very useful
debugging tools.

prompt()
Another helpful built-in function is prompt(), which asks your visitor for some
information and then sets a variable equal to whatever your visitor types. Fig-
ure 2-10 shows how you might use prompt() to write a form letter.

<html>

<head>

<title>A Form Letter</title>

<script type = "text/javascript">

<!-- hide me from older browsers

 var the_name = prompt("What's your name?", "put your name here");

// show me -->

</script>

</head>

<body>

 <h1>Dear

<script type = "text/javascript">

<!-- hide me from older browsers

document.write(the_name);

// show me -->

</script>

,</h1>

Thank you for coming to my web page.

</body>

</html>

Figure 2-10: Using prompt() to write a form letter

Notice that prompt() in has two strings inside the parentheses: "What's
your name?" and "put your name here". If you run the code in Figure 2-10, you’ll
see a prompt box that resembles Figure 2-11. (I’ve used the Opera browser in

Using Var iables and Bu i l t - in Funct ions to Update Your Web Pages Automat ical ly 25

this illustration; prompt boxes will look somewhat different in IE and other
browsers.) If you type Rumpelstiltskin and click OK, the page responds with
Dear Rumpelstiltskin, Thank you for coming to my web page.

Figure 2-11: Starting a form letter with a prompt box

The text above the box where your visitors will type their name ("What's
your name?") is the first string in the prompt function; the text inside the box
("put your name here") is the second string. If you don’t want anything inside
the box, put two quotes ("") right next to each other in place of the second
string to keep that space blank:

var the_name = prompt("What's your name?", "");

If you look at the JavaScript in the body (starting in), you’ll see
how to use the variable the_name. First write the beginning of the heading
to the page using normal HTML. Then launch into JavaScript and use
document.write(the_name) to write whatever name the visitor typed into the
prompt box for your page. If your visitor typed yertle the turtle into
that box, yertle the turtle gets written to the page. Once the item in the_name
is written, you close the JavaScript tag, write a comma and the rest of the
heading using regular old HTML, and then continue with the form letter.
Nifty, eh?

The prompt() function is handy because it enables your visitor to supply
the variable information. In this case, after the user types a name into the
prompt box in Figure 2-10 (thereby setting the variable the_name), your script
can use the supplied information by calling that variable.

Parameters
The words inside the parentheses of functions are called parameters. The
document.write() function requires one parameter: a string to write to your
web page. The prompt() function takes two parameters: a string to write above
the box and a string to write inside the box.

Parameters are the only aspect of a function you can control; they are
your means of providing the function with the information it needs to do its
job. With a prompt() function, for example, you can’t change the color of
the box, how many buttons it has, or anything else; in using a predefined
prompt box, you’ve decided that you don’t need to customize the box’s
appearance. You can only change the parameters it specifically provides—

26 Chapter 2

namely, the text and heading of the prompt you want to display. You’ll learn
more about controlling what functions do when you write your own functions
in Chapter 6.

Writing the Date to Your Web Page

Now that you know about variables and functions, you can print the date to
your web page. To do so, you must first ask JavaScript to check the local time
on your visitor’s computer clock:

var now = new Date();

The first part of this line, var now =, should look familiar. It sets the variable
now to some value. The second part, new Date(), is new; it creates an object.

Objects store data that require multiple pieces of information, such as a
particular moment in time. For example, in JavaScript you need an object to
describe 2:30 PM on Saturday, January 7, 2006, in San Francisco. That’s because
it requires many different bits of information: the time, day, month, date,
and year, as well as some representation (in relation to Greenwich Mean
Time) of the user’s local time. As you can imagine, working with an object
is a bit more complicated than working with just a number or a string.

Because dates are so rich in information, JavaScript has a built-in Date
object to contain those details. When you want the user’s current date and
time, you use new Date() to tell JavaScript to create a Date object with all the
correct information.

NOTE You must capitalize the letter D in Date to tell JavaScript you want to use the built-in
Date object. If you don’t capitalize it, JavaScript won’t know what kind of object you’re
trying to create, and you’ll get an error message.

Built-in Date Functions
Now that JavaScript has created your Date object, let’s extract information
from it using JavaScript’s built-in date functions. To extract the current year,
use the Date object’s getYear() function:

var now = new Date();
var the_year = now.getYear();

Date and Time Methods
In the code above, the variable now is a Date object, and the function getYear()
is a method of the Date object. Methods are simply functions that are built in
to objects. For example, the getYear() function is built in to the Date object
and gets the object’s year. Because the function is part of the Date object, it
is called a method. To use the getYear() method to get the year of the date
stored in the variable now, you would write:

now.getYear()

Using Var iables and Bu i l t - in Funct ions to Update Your Web Pages Automat ical ly 27

Table 2-1 lists commonly used date methods. (You can find a complete
list of date methods in Appendix C.)

NOTE Notice that getMonth() returns a number between 0 and 11; if you want to show the
month to your site’s visitors, to be user-friendly you should add 1 to the month after
using getMonth(), as shown in in Figure 2-12.

Internet Explorer and various versions of Netscape deal with years in
different and strange ways:

Some versions of Netscape, such as Netscape 4.0 for the Mac, always
return the current year minus 1900. So if it’s the year 2010, getYear()
returns 110.

Other versions of Netscape return the full four-digit year except when
the year is in the twentieth century, in which case they return just the last
two digits.

Netscape 2.0 can’t deal with dates before 1970 at all. Any date before Jan-
uary 1, 1970 is stored as December 31, 1969.

In Internet Explorer, getYear() returns the full four-digit year if the year
is after 1999 or before 1900. If the year is between 1900 and 1999, it
returns the last two digits.

You’d figure a language created in 1995 wouldn’t have the Y2K problem,
but the ways of software developers are strange. Later in this chapter I’ll show
you how to fix this bug.

Code for Writing the Date and Time

Now let’s put this all together. To get the day, month, and year, we use
the getDate(), getMonth(), and getYear() methods. To get the hour and the
minutes, we use getHours() and getMinutes().

Figure 2-12 shows you the complete code for writing the date and
time (without seconds) to a web page, as seen on the Book of JavaScript
home page.

Table 2-1: Commonly Used Date and Time Methods

Name Description

getDate() The day of the month as an integer from 1 to 31

getDay() The day of the week as an integer where 0 is Sunday and 1 is Monday

getHours() The hour as an integer between 0 and 23

getMinutes() The minutes as an integer between 0 and 59

getMonth() The month as an integer between 0 and 11 where 0 is January and 11 is
December

getSeconds() The seconds as an integer between 0 and 59

getTime() The current time in milliseconds where 0 is January 1, 1970, 00:00:00

getYear() The year, but this format differs from browser to browser

28 Chapter 2

<html>

<head><title>The Book of JavaScript</title>

<script type = "text/javascript">

<!-- hide me from older browsers

// get the Date object

//

 var date = new Date();

// get the information out of the Date object

//

var month = date.getMonth();

var day = date.getDate();

var year = date.getYear();

var hour = date.getHours();

var minutes = date.getMinutes();

 month = month + 1; // because January is month 0

// fix the Y2K bug

//

 year = fixY2K(year);

// fix the minutes by adding a 0 in front if it's less than 10

//

 minutes = fixTime(minutes);

// create the date string

//

 var date_string = month + "/" + day + "/" + year;

 var time_string = hour + ":" + minutes;

 var date_time_string = "Today is " + date_string + ". The time is now " +

time_string + ".";

// This is the Y2K fixer function--don't worry about how this works,

// but if you want it in your scripts, you can cut and paste it.

//

function fixY2K(number) {

 if (number < 1000) {

 number = number + 1900;

 }

 return number;

}

// This is the time fixer function--don't worry about how this works either.

function fixTime(number) {

 if (number < 10) {

 number = "0" + number;

 }

 return number;

}

// show me -->

</script>

</head>

<body>

Using Var iables and Bu i l t - in Funct ions to Update Your Web Pages Automat ical ly 29

 <h1>Welcome to the Book of JavaScript Home Page!</h1>

<script type = "text/javascript">

<!-- hide me from older browsers

 document.write(date_time_string);

// show me -->

</script>

</body>

</html>

Figure 2-12: Writing the current date and time to a web page

Line-by-Line Analysis of Figure 2-12
Here are a few interesting things in this example.

Getting the Date and Time

The lines from up until get the current date and time from the visitor’s
computer clock and then use the appropriate date methods to extract the
day, month, year, hours and minutes. Although I’m using a variable name
date in to store the date, I could have used any variable name there: the_date,
this_moment, the_present, or any valid variable name. Don’t be fooled into
thinking that a variable needs to have the same name as the corresponding
JavaScript object; in this case, date just seems like a good name.

Making Minor Adjustments

Before building the strings we will write to the website, we need to make some
little adjustments to the date information just collected. Here’s how it works:

Line adds 1 to the month because getMonth() thinks January is month 0.

Line fixes the Y2K problem discussed earlier in the chapter, in which
the getYear() method returns the wrong thing on some older browsers.
If you feed fixY2K() the year returned by date.getYear(), it will return the
correct year. The fixY2K() function is not a built-in JavaScript function.
I had to write it myself. Don’t worry about how the function works
right now.

Line fixes a minor formatting issue, using another function that’s
not built-in. If the script is called at 6 past the hour, date.getMinutes()
returns 6. If you don’t do something special with that 6, your time will
look like 11:6 instead of 11:06. So fixTime() sticks a zero in front of
a number if that number is less than 10. You can use fixTime() to fix
the seconds too, for your homework assignment.

Getting the String Right

Now that we’ve made a few minor adjustments, it’s time to build the strings.
Line builds the string for the date. Here’s the wrong way to do it:

var date_string = "month / day / year";

30 Chapter 2

If you wrote your code this way, you’d get a line that says Today is month
/ day / year. Why? Remember that JavaScript doesn’t look up variables if
they’re inside quotes. So place the variables outside the quote marks and
glue everything together using plus signs (+):

var date_string = month + "/" + day + "/" + year;

This may look a little funny at first, but it’s done so frequently that you’ll
soon grow used to it. Line creates the string to represent the time. It is very
similar to . Line puts and together to create the string that will be
written to the website. Lines through could all have been written as one
long line:

var date_time_string = "Today is " + month + "/" + day + "/" + year +
". The time is now " + hour + ":" + minutes + ".";

However, using three lines makes the code easier for people to read and
understand. It’s always best to write your code as if other people are going to
read it.

What Are Those Other Functions?

The JavaScript between and defines the fixY2K() and fixTime() functions.
Again, don’t worry about these lines for now. We’ll cover how to write your
own functions in glorious detail in Chapter 6.

JavaScript and HTML

Make sure to place your JavaScript and HTML in the proper order. In
Figure 2-12, the welcoming HTML in precedes the JavaScript that actually
writes the date and time in , since the browser first writes that text and then
executes the JavaScript. With JavaScript, as with HTML, browsers read from
the top of the page down. I’ve put document.write() in the body so that the
actual date information will come after the welcome text. I’ve put the rest
of the JavaScript at the head of the page to keep the body HTML cleaner.

Why document.write()?

Notice that the code in Figure 2-11 uses document.write() instead of
window.document.write(). In general, it’s fine to drop the word window and the
first dot before the word document. In future chapters I’ll tell you when the
word window must be added.

How the European Space Agency Writes the Date to Its Page

The JavaScript used by the European Space Agency is very much like the
code I used for the Book of JavaScript web page. One big difference between
the two is that the ESA prints out the month using abbreviations like Jan and
Feb for January and February. They do this using arrays, a topic discussed in
Chapter 8, so in Figure 2-13 I’ve modified their code a bit to focus on topics
covered so far.

Using Var iables and Bu i l t - in Funct ions to Update Your Web Pages Automat ical ly 31

<script type = "text/javascript">

var now = new Date();

var yyyy = now.getFullYear();

var mm = now.getMonth() + 1;

 if (10 > mm) mm = '0' + mm;

var dd = now.getDate();

 if (10 > dd) dd = '0' + dd;

document.write(dd + '-' + mm + '-' + yyyy);

</script>

Figure 2-13: How the European Space Agency writes the date to its page

Everything here should look very familiar to you, except for and ,
which will make more sense after you’ve read Chapter 3. If anything else in
the ESA script seems unclear to you, try doing the homework assignment.
In fact, do the homework assignment even if it all seems extremely clear.
The only way to really learn JavaScript is to do it. Go ahead, give that
homework a shot! And enjoy!

Summary

This chapter was chock-full of JavaScript goodness. Here’s a review of the most
important points for you to understand:

How to declare and use variables (use var the first time and use valid and
descriptive variable names)

How to write to web pages with document.write()

How to get the current date from JavaScript with the Date object and its
various methods

If you got all that, you’re well on your way to becoming a JavaScript
superstar. Try the following assignment to test your JavaScript skills.

Assignment

Change the script in Figure 2-12 so that it writes out the seconds as well as the
hour and minutes.

If you’re feeling like getting ahead of the game, you can try, for a big
chunk of extra credit, to change the time from a 24-hour clock to a 12-hour
clock. The getHours() method returns the hour as a number between 0 and 23.
See if you can figure out how to adjust that time to be between 1 and 12.
You’ll have to use some tricks I haven’t covered in this chapter. If you can’t
figure this out now, you’ll be able to do it by the end of the next chapter.

G I V I N G T H E B R O W S E R S
W H A T T H E Y W A N T

Much to the dismay of web developers
everywhere, different browsers implement

JavaScript and HTML in slightly different
ways. Wouldn’t it be great if you could serve

each browser exactly the content it could understand?
Fortunately, you can use JavaScript to determine which browser a visitor

is using. You can then use that information to deliver content suitable for
that specific browser, either by redirecting the visitor to a page containing
content especially tailored for that browser or by writing your JavaScripts
so that the same page does different things depending on the browser
looking at it.

This chapter covers the three topics you need to understand to deliver
browser-specific pages using redirects:

How to determine which browser your visitor is using

How to redirect the visitor to other pages automatically

How to send the visitor to the page you want, depending on which
browser he or she is using

34 Chapter 3

As in Chapter 2, while learning how to handle an important web
authoring task, you’ll also be introduced to fundamental elements of the
JavaScript language—in this case, if-then statements and related methods
for implementing logical decision making in your scripts.

Let’s first talk about determining which browser a visitor is using.

A Real-World Example of Browser Detection

Before we get into the details of how browser detection works, let’s look at a
real-world example.

Netscape, the company that brought you the Netscape Navigator browser,
has a complicated home page with lots of interesting features. They’ve taken
great pains to make their home page look good to most browsers, including
early versions of their own browser. If you compare the Netscape home page
seen with Netscape Navigator 4 (Figure 3-1) to the page seen using Navigator 8
(Figure 3-2), you’ll notice some subtle differences. Among other things, the
news blurb at the bottom of Figure 3-2 has a little navigational element in the
lower-right corner. Clicking the numbers in that corner cycles you through
different news blurbs. Figure 3-1 does not have these numbers, probably
because there isn’t a good way to provide this fancy functionality in the old
Netscape Navigator.

How does Netscape show the numbers to only those browsers that can
provide this feature? There are two steps. First you have to determine which
browser your visitor is using. Once you know the browser, you know what
JavaScript and HTML features it supports. Then you have to figure out how
to control what the person will see based on the known capabilities of the
browser.

Figure 3-1: Netscape Navigator 4 view
of Netscape home page

Figure 3-2: Netscape Navigator 8 view
of Netscape home page

Giv ing the Browsers What They Want 35

Browser Detection Methods

A browser is identified by its name (Netscape, Firefox, Internet Explorer, and
so on) combined with its version number. Your JavaScript needs to determine
both of these items. There are two ways to approach this task: a quick but
rough method and a slightly less quick but more accurate method.

Quick-but-Rough Browser Detection
In general, the line

var browser_name = navigator.appName;

determines who made the browser. If the user is using a Netscape browser, the
variable browser_name will be set to the string "Netscape". If it’s a Microsoft Inter-
net Explorer browser, browser_name will be set to "Microsoft Internet Explorer".
Every JavaScript-enabled browser must have the variable navigator.appName.
If you use Opera, navigator.appName equals "Opera". Unfortunately, some
browsers travel incognito. For example, the navigator.appName for Firefox is
"Netscape". The JavaScript in Firefox is the same as that for Netscape browsers,
so in general, it’s fine to treat Firefox browsers as Netscape browsers. But, as
you can see, if you want to be sure about the browser being used, you can’t
rely on naviagor.appName.

There’s a similar rough method for determining the browser version
being used: navigator.appVersion. Unfortunately, navigator.appVersion isn’t
just a number but a sometimes cryptic string that varies from browser to
browser. For example, the Macintosh browser Safari has this nice, simple
navigator.appVersion string: "5.0". By contrast, Internet Explorer 6.0 run-
ning under Windows XP has a navigator.appVersion that looks like this:
"4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)". To see the
navigator.appVersion string for your browser, type this into the browser’s
address box (where you normally enter web addresses):

javascript:alert(navigator.appVersion)

If you care only about whether a person is using a 4.0 browser or later,
you can pick out the version numbers from those navigator.appVersion strings
with the parseFloat() command, which looks at the string and grabs the first
item that resembles a floating-point number (a number that contains a decimal
point). Thus the line

var browser_version = parseFloat(navigator.appVersion);

sets the variable browser_version to the first number in the navigator.appVersion
string. For most browsers, this will be the actual version number. For Internet
Explorer, it will be 4.0 for any version of the browser 4.0 or later. You can see
why I call this method rough.

36 Chapter 3

More Accurate Browser Detection

JavaScript has another variable that contains information about the browser
being used: navigator.userAgent. This variable identifies both the manufacturer
of the browser and its version. As it did with navigator.appVersion, however,
the formatting of the string varies from browser to browser.

Because the navigator.userAgent strings are different from each other,
there is no simple way to extract the information you want. Fortunately,
people have already written browser sniffers: bits of JavaScript that will do all
the hard work of browser identification for you. You can find brwsniff.js,
which I downloaded from http://jsbrwsniff.sourceforge.net, at http://
www.bookofjavascript.com/Chapter03.

To use this file, put it in the same folder as the web page containing your
JavaScript. Then, put this line in the header of your web page:

<script type = "text/javascript" src = "brwsniff.js"></script>

This tells JavaScript to add the contents of the file named brwsniff.js to
your web page. Now you can use the JavaScript stored in that file.

To use the JavaScript in brwsniff.js to determine the name and version of
the browser being used to view your web page, add these lines of JavaScript:

 var browser_info = getBrowser();

 var browser_name = browserInfo[0];

 var browser_version = browserInfo[1];

Line calls a function in brwsniff.js that reads the navigator.userAgent
string and compares it to all the different browser version strings it knows.
Once it determines the name and version of the browser, the function loads
this information into a variable called browser_info. All the variables we’ve seen
so far store one piece of information—a string or a number, for example.
This browser_info variable is an array, a type of variable designed to hold
multiple items of related information. You’ll learn how to work with arrays
in Chapter 8. For now it’s enough to know that an array is a variable that
can store more than one piece of information. Line puts the first bit of
information stored in the array into a variable called browser_name. Line
puts the second piece of information stored in browser_info into a variable
named browser_version. Used together, these two variables tell you what kind
of browser is viewing the web page. Try the web page in Figure 3-3 on your
own browser.

NOTE This <script> tag does not require the <!-- and //--> to hide it from older browsers
because there is no code between the opening and closing tags.

The quick but rough method of browser detection should work for most
situations, especially when you don’t need to know exactly which browser is
being used. For the cases in which you do need the exact name and version,
you should use a browser sniffer like the one just described.

Giv ing the Browsers What They Want 37

<html>

<head>

<title>I Know Which Browser You're Using!</title>

<script type = "text/javascript" src = "brwsniff.js"></script>

</head>

<body>

<script type = "text/javascript">

<!-- hide me from older browsers

var browser_info = getBrowser();

var browser_name = browser_info[0];

var browser_version = browser_info[1];

document.write ("You're using " + browser_name + " version " +
browser_version);

// show me -->

</script>

</body>

</html>

Figure 3-3: Finding the browser version number with a browser sniffer

Redirecting Visitors to Other Pages

Now that you understand browser detection, you can tailor your site to
provide information specific to each browser. There are two main ways
to do this. First, you can use document.write(), which we saw in the last
chapter, to display one message on your page if the site visitor is using
Netscape Navigator 4, and a different message on the same page for
Internet Explorer 6.0. Alternatively, you can redirect your visitors to
separate pages specifically tailored to different browsers. To redirect
visitors to another page, you’d write something like this:

window.location.href = "http://www.mywebsite.com/page_for_netscape4.html";

When JavaScript sees a line like this, it loads the page with the specified
URL into the browser.

NOTE Are you wondering “What’s with all these periods in commands like window.location.href
and navigator.appName?” Never fear. I’ll address these when I discuss image swaps and
dot notation in Chapter 4.

In general, it’s probably best to use document.write() instead of redirecting
the user. Because there are so many browsers, trying to maintain a different
page for each one can quickly become burdensome. However, if you just want
to redirect someone with an older browser to a page that tells them to upgrade,
redirection is probably the best way to go.

38 Chapter 3

if-then Statements

Now that you know which browser your visitor is using, you need to learn how
to tell JavaScript to write different things depending on the browser being
used—in other words, how to implement a logical test, choosing between
different actions based on specific information. Branching is a fundamental
technique in any programming or scripting language. Be sure to read this
section if you’re not already familiar with the concept.

To alter your web pages based on the browser a visitor is using, you tell
JavaScript something like, “If the visitor is using Internet Explorer, then write
this IE-tailored content.”

An if-then statement in JavaScript looks like this:

if (navigator.appName == "Microsoft Internet Explorer")

{

 // write IE-specific content

 document.write("Welcome, Internet Explorer user!");

}

Here’s the basic structure of an if-then statement:

if (some test)

{

 statement_1;

 statement_2;

 statement_3;

 ...

}

NOTE JavaScript is unforgiving: if must be lowercase, and you must put parentheses around
the test that follows it.

The test that appears between the parentheses must be either true or
false. If the variable navigator.appName equals "Microsoft Internet Explorer", the
test between the parentheses is true, and the statements located between the
curly brackets are executed. If the variable doesn’t equal "Microsoft Internet
Explorer", the test between the parentheses is false, and the statements
between the curly brackets aren’t executed.

Boolean Expressions
The test in the parentheses after if is a Boolean expression—an expression that’s
either true or false. In JavaScript, a Boolean expression is usually a statement
about the values of one or more variables. Table 3-1 lists some of the symbols
you’ll be using to form Boolean expressions in JavaScript.

NOTE Boolean expressions are named after George Boole (1815–1864), who invented a way
to express logical statements in mathematical form.

Giv ing the Browsers What They Want 39

Notice in Table 3-1 that you must use two equal signs when you want
JavaScript to test for equality in an if-then statement Boolean expression.
In fact, accidentally using one equal sign instead of two in an if-then state-
ment is probably the major cause of mind-blowing programming errors. As
you learned in Chapter 2, a single equal sign is used to assign a value to a
variable. So if you accidentally use only one equal sign, JavaScript thinks
you mean to set the variable on the left of the equal sign to the value of
whatever is on the right of the equal sign, and it will act as if the test result
is always true.

Here’s an example of the trauma that this mistake can cause. Say you
want to write a JavaScript that puts Happy Birthday, Mom! on your web page
when it’s your mother’s birthday. If her birthday were August 6, you might
write something like Figure 3-4 (which contains the dreaded error).

If you try this script, you’ll see that it always prints Happy Birthday, Mom! to
the web page, which is great for Mom, but probably not what you want.

<script type = "text/javascript">

<!-- hide me from older browsers

var today = new Date();

var day = today.getDate();

 var month = today.getMonth();

 if (month = 7) // remember, January is month 0, so August is month 7

{

 if (day = 6)

 {

 document.write("<h1>Happy Birthday, Mom!</h1>");

 }

}

// show me -->

</script>

Figure 3-4: Mom’s birthday greeting—broken version

Table 3-1: Symbols in Boolean Expressions

Test Meaning Example (All of These Are True)

< Less than 1 < 3

> Greater than 3 > 1

== The same as (equal) "happy" == "happy", 3 == 3

!= Different from (not equal) "happy" != "crabby", 3 != 2

<= Less than or equal to 2 <= 3, 2 <= 2

>= Greater than or equal to 3 >= 1, 3 >= 3

40 Chapter 3

The script starts off correctly. When JavaScript sees , it sets the variable
month to whatever month it is. If you’re running the script in March, it sets month
to 2. The problem arises in the next line, though:

if (month = 7)

Here JavaScript sees one equal sign and thinks you want to set the variable
month to the value 7. The script does what you’re telling it to do, and then acts
as if your test is true.

Since the result is true, JavaScript moves to the curly brackets, where it
finds , another if-then statement that incorrectly uses one equal sign instead
of two. This line sets the variable day to the value 6 and again results in a true
statement. JavaScript then moves to the second set of curly brackets, where it
sees that it’s supposed to write <h1>Happy Birthday, Mom!</h1>, which it does—
every time someone visits the page (see Figure 3-5).

Figure 3-5: Mom’s birthday greeting

NOTE I remember the difference between one and two equal signs by thinking is the same as
instead of equals when I’m doing an if-then test, and remembering that is the
same as translates into two equal signs.

Nesting
Figure 3-4 is the first example I’ve used of nesting—one if-then statement
inside another. Although it sometimes makes sense to nest your if-then
statements, things get confusing if you start to get three or more levels deep
(one if-then statement inside the curly brackets of another if-then statement,
which itself is inside the curly brackets of a third if-then statement).

Try to write your code so that it doesn’t need more than two levels of nest-
ing. If you find yourself with if-then statements more than two levels deep, it
often means that you’re doing something complicated enough to justify writing
a new function to handle some of the complexity. (More on that in Chapter 6.)

if-then-else Statements
There are a couple of fancier versions of the if-then statement. The first is
the if-then-else statement:

if (navigator.appName == "Microsoft Internet Explorer")

{

 // write IE-specific content

Giv ing the Browsers What They Want 41

 document.write("Welcome, Internet Explorer user!");

}

else

{

 // write netscape specific content

 document.write("Welcome, Netscape user!");

}

This reads nicely in English if you read else as otherwise: “If they’re using
Internet Explorer, show them IE-specific content, otherwise send them
Netscape-specific content.”

if-then-else-if Statements
The above code assumes that there are only two browser manufacturers in
the world, when in fact there are a multitude. We can solve this problem
with an if-then-else-if statement that, if a visitor has a browser other than
Netscape or Internet Explorer, displays content regarding unknown browsers.

if (navigator.appName == "Netscape")

{

 // write netscape-specific content

 document.write("Welcome, Netscape user!");

}

else if (navigator.appName == "Microsoft Internet Explorer")

{

 // write IE-specific content

 document.write("Welcome, Internet Explorer user!");

}

else

{

 // write unknown browser content

 document.write("Welcome, user of a fancy unknown browser!");

}

This code reads in English as: “If they’re using Netscape, send them
Netscape-specific content; if they’re using Internet Explorer, send them IE-
specific content. Otherwise send them a message about having a mysterious
browser.”

When and Where to Place Curly Brackets
Notice in the examples above that curly brackets (braces) mark the begin-
ning and end of the body of an if-then statement, enclosing the part where
you tell JavaScript what action(s) to take. You’ll also notice that I place my
beginning and ending curly brackets on their own lines, like this:

if (something == something_else)

{

 blah_blah_blah;

}

42 Chapter 3

This is my style, one that I think makes it easier to align pairs of beginning
and ending brackets. Other people prefer this slightly more compact style:

if (something == something_else) {

 blah_blah_blah;

}

It’s up to you to choose where you put the curly brackets. Many studies
have tried to figure out which formatting style is most readable or which avoids
bugs. When you get right down to it, just decide what you think looks good
and go with that.

Sometimes curly brackets are not needed in an if-then statement, such as
when the body of the statement has only one line. For example, this is legal:

if (something == something_else)

 alert("they're equal");

else

 alert("they're different!");

Since each of the “then” parts of the clause is only one line (the alert
functions), the curly brackets around these statements are optional. However,
it’s always a good idea to include the braces anyway, because you might want
to add a second line to that else clause. If you do add a second line to the
else clause and forget to put the brackets around the two lines, your script
won’t work.

With curly brackets, the previous example would look like this:

if (something == something_else)

{

 alert("they're equal");

}

else

{

 alert("they're different!");

}

Or, if you prefer the more compact style:

if (something == something_else) {

 alert("they're equal");

} else {

 alert("they're different!");

}

OR and AND

The if-then statements we’ve seen so far are pretty simple. You might, however,
want to add more conditions to an if-then statement (for example, “If Joe is
in high school and is not doing his homework, then tell him to get to work”).
To add more conditions to an if-then statement, use the OR and AND operators.

Giv ing the Browsers What They Want 43

OR

Suppose you want to give different greetings to people who come to your
site, depending on who they are. You could, as in Figure 3-6, use a prompt
box to ask for a visitor’s name (Figure 3-7) and then use an if-then statement
to determine which greeting to give.

<script type = "text/javascript">

<!-- hide me from older browsers

var the_name = prompt("What's your name?", "");

if (the_name == "thau")

{

 document.write("Welcome back, thau! Long time no see!");

} else {

 document.write("Greetings, " + the_name + ". Good to see you.");

}

// show me -->

</script>

Figure 3-6: Asking for a visitor’s name with the prompt box

Figure 3-7: The prompt box asking for a visitor’s name

This example greets thau with “Welcome back, thau! Long time no see!”
(Figure 3-8) and everyone else with “Greetings, Name. Good to see you.”

Figure 3-8: thau’s greeting

To greet others the same way you greet thau, you could use a series of
if-then statements as in Figure 3-9.

if (the_name == "thau")

{

 document.write("Welcome back, thau! Long time no see!");

}

else if (the_name == "dave")

{

 document.write("Welcome back, dave! Long time no see!");

}

44 Chapter 3

else if (the_name == "pugsly")

{

 document.write("Welcome back, pugsly! Long time no see!");

}

else if (the_name == "gomez")

{

 document.write("Welcome back, gomez! Long time no see!");

}

else

{

 document.write("Greetings, " + the_name + ". Good to see you.");

}

Figure 3-9: Personalized greetings with a series of if-then statements

This would work, but there’s a lot of waste here: We repeat basically the
same document.write() line four times. What we really want to say is something
like: “If the_name is thau, or dave, or pugsly, or gomez, give the ‘Long time no
see’ greeting.” JavaScript has a feature called the OR operator, which comes
in handy here. Figure 3-10 shows OR in use:

if ((the_name == "thau") || (the_name == "dave") ||

 (the_name == "pugsly") || (the_name == "gomez"))

{

 document.write("Welcome back, " + the_name + "! Long time no see!");

}

Figure 3-10: The OR operator

The OR operator is represented by two vertical lines (||), called bars. You
will usually be able to type the bar (|) character as the shifted backslash (\)
key on your keyboard.

NOTE Although each of the Boolean tests in Figure 3-10 (for example, the_name == "thau")
has its own parentheses, these aren’t strictly necessary. However, the set of parentheses
around all four Boolean tests is required, and it’s a good idea to include the other
parentheses for legibility’s sake.

AND

AND, another important operator, is represented by two ampersands (&&).
Figure 3-11 shows this operator in use.

var age = prompt("How old are you?", "");

var drinking = prompt("Are you drinking alcohol (yes or no)?", "yes");

if ((age < 21) && (drinking == "yes"))

{

 document.write("Beat it!");

}

else

Giv ing the Browsers What They Want 45

{

 document.write("Enjoy the show!");

}

Figure 3-11: The AND operator

When bars start using robot bouncers that run on JavaScript, this is the
kind of code they’ll be running. The script asks a person’s age and whether
he or she is drinking alcohol (Figure 3-12).

Figure 3-12: The bouncer’s questions

If the person is under 21 and is drinking alcohol, the bouncer tells him
or her to beat it. Otherwise, the visitor is perfectly legal and is welcome to stay
(Figure 3-13). (Never mind the fake IDs for now.)

o

Figure 3-13: The bouncer’s response

Putting It All Together

Here’s a script containing most of what’s been presented in the chapter so
far. The script in Figure 3-14 redirects users to one page if they’re using an
older version of Netscape (version 4 or earlier), another page if they’re using
an older version of Internet Explorer (version 5.5 or earlier), a third page for
browsers it’s unfamiliar with, and a fourth page for modern browsers it
knows about.

I’ve broken the code into two blocks of <script> tags. The first sets up the
variables and the second does the redirection.

NOTE It’s a good idea to declare variables at the top of your script. That way, if you want to
change a variable later, you won’t have to go hunting through a lot of HTML and
JavaScript to find it.

<html><head><title>Redirection</title>

<script type = "text/javascript" src = "brwsniff.js"></script>

<script type = "text/javascript">

<!-- hide me from older browsers

46 Chapter 3

var browser_info = getBrowser();

var browser_name = browser_info[0];

var browser_version = browser_info[1];

var this_browser = "unknown";

if (browser_name == "msie")

{

 if (browser_version < 5.5)

 {

 this_browser = "old Microsoft";

 }

 else

 {

 this_browser = "modern";

 }

} // end if browser_name == Microsoft

if (browser_name == "netscape")

 {

 if (browser_version < 6.0)

 {

 this_browser = "old Netscape";

 }

 else

 {

 this_browser = "modern";

 }

} // end if browser_name == Netscape

// show me -->

</script>

</head><body>

<SCRIPT type = "text/javascript">

<!-- hide me from older browsers

if (this_browser == "old Netscape")

{

 window.location = "archaic_netscape_index.html";

} else if (this_browser == "old Microsoft") {

 window.location.href = "archaic_ie.html";

} else if (this_browser == "modern")

{

 window.location.href = "modern_browser.html";

}

// show me -->

</script>

<h1>Unknown Browser</h1>

Sorry, but this page only works for browsers Netscape 6.0 and later, and
Internet Explorer 5.5 and later.

</body>

</html>

Figure 3-14: Complete redirection code

Giv ing the Browsers What They Want 47

A Few More Details About Boolean Expressions

There are just a few more things you need to know about Boolean
expressions before you can call yourself a Boolean master. You already
know that you can create an if-then statement using code like this:

if (name == "thau") {

 alert("Hello, thau!");

}

This says, “If it is true that the variable name contains the string thau, put
up an alert saying Hello, thau! ” What you may not know is that you can store
the value true or false in a variable and use it later. So, I could have done this
instead:

var thisIsThau = (name == "thau");

if (thisIsThau == true) {

 alert("Hello, thau!");

}

The first line tests to see whether the variable name contains the string
"thau". If it does, the test is true. This true value is stored in the variable
thisIsThau. You can then test to see whether the variable thisIsThau is true, as
seen in the subsequent if-then statement. This can be shortened a bit to this:

var thisIsThau = (name == "thau");

if (thisIsThau) {

 alert("Hello, thau!");

}

Notice that I’m not explicitly checking to see whether thisIsThau contains
the value true. Instead, I’m just putting the variable inside the if-then test
parentheses. The if-then rule states, “If the thing inside the parentheses is
true, do the action in the curly brackets.” In this case, the variable isThisThau
will be true if the variable name contains the value "thau".

If you wanted to do something in the case where the string stored in name
was something other than "thau" you could do this:

var thisIsThau = (name == "thau");

if (thisIsThau == false) {

 alert("Hello, somebody other than thau!");

}

Here, we’re checking to see whether the value stored inside thisIsThau is
false, which it will be if the comparison of name and "thau" turned out to be false
in the line above (for example, if name equaled "pugsly").

The final shortcut involves using the special character !, which means not.

48 Chapter 3

var thisIsThau = (name == "thau");

if (!thisIsThau) {

 alert("Hello, somebody other than thau!");

}

The expression means “if thisIsThau is not true, then do the stuff in the
curly brackets.” These Boolean shortcuts are used quite frequently in the
scripts I’ve seen on the Web, so you should take some time to get used to them.

How Netscape Provides Browser-Specific Content

Now we’ve covered just about everything you need to know to understand
how Netscape serves up the browser-specific content illustrated at the begin-
ning of the chapter (Figures 3-1 and 3-2). Here is a somewhat simplified and
modified version of the JavaScript on Netscape’s home page:

<script type = "text/javascript">

 var agent = navigator.userAgent.toLowerCase();

 var major = parseInt(navigator.appVersion);

var minor = parseFloat(navigator.appVersion);

 var ns = ((agent.indexOf('mozilla') != -1) &&
(agent.indexOf('compatible') == -1));

 var ns4 = (ns && (major == 4));

var ns7 = (ns && (agent.indexOf('netscape/7') != -1));

var ie = (agent.indexOf("msie") != -1);

var ie4 = (ie && (this.major >= 4));

var ie6 = (ie && (agent.indexOf("msie 6.0") != -1));

var op3 = (agent.indexOf("opera") != -1);

</script>

Next comes all of the HTML. Inside the HTML, when you want to decide
whether or not to write something based on the browser being used, you do
something like this:

 <script type = "text/javascript">

 if (!ns4) document.write('<td>the stuff that puts in the numbers</td>');

 </script>

The script starts by using the userAgent and appVersion variables to
determine the type of browser being used. Notice the use of parseInt() in .
This function works just like parseFloat(), except that it pulls the first integer
out of a string, rather than the first floating-point number. This will set the
variable major to a number like 4, 5, or 6.

The next line () is jam-packed with information, so take it slow. The
first thing to notice is the use of the indexOf() function. We’ll see more of
indexOf() in Chapter 11 when we work with strings. The main thing to
know here is that indexOf() checks to see whether a string contains another

Giv ing the Browsers What They Want 49

string. To see if the word mozilla is part of the string stored in agent, we use
agent.indexOf('mozilla'). If mozilla is in the agent string, indexOf() will return
some number other than 1. If mozilla is not part of the agent string, indexOf()
will return 1. This can get a little confusing, so make sure you understand
that last rule.

Now, looking at , we see that there are two main parts. The first part
checks to see whether some application of the indexOf() function gives a
result different from 1. The next part checks to see if another application
of the indexOf() function gives a result that equals 1. If the first part is true,
and the second part is also true, then the whole thing is true, and the value
true is stored in the variable ns. If either of the comparisons is false, then the
whole thing will be false, and the value false will be stored in ns. Remember
the bouncer’s test:

if ((age < 21) && (drinking == "yes"))

If both statements were true—the person was under 21, and the person
was drinking—the person got bounced. If either part was not true, then they
were okay.

With all that in mind, let’s look to see what the two comparisons in are.
The first one will return the value true if indexOf() finds the string mozilla in
the variable agent. Take a long, hard look at the expression:

agent.indexOf('mozilla') != -1

Remember, if the string stored in variable agent contains the string
mozilla, indexOf() will return a value not equal to 1. So this test will be true
if the navigator.userAgent has the word mozilla (upper- or lowercase) in it.

The next part makes sure that the navigator.userAgent does not contain
the string compatible. This is because many browsers say they are Mozilla
compatible, and they’ll have both the words mozilla and compatible in their
navigator.userAgent string. Netscape just has the word mozilla in its string.
The end result of is that the variable ns will be true if the navigator.userAgent
contains the string mozilla but not the string compatible.

The next lines figure out which version of Netscape this might be.
Consider :

var ns4 = (ns && (major == 4));

This line says, “If the variable ns is true, and the variable major has a value
of 4, then put the value true in the variable ns4.” If it’s not true both that the
variable ns is true and that the variable major is 4, then ns4 will be false. The
other lines perform similar tests for Navigator 7 and other browsers. Each
one is a little different from the others, so make sure you take some time to
understand all of them.

50 Chapter 3

Once the browser is known, the decision whether or not to display the
browser-specific feature (namely, the page number navigation links) happens
later in the code. Right at the place where you either write something to the
web page or not, depending on the browser being used, you use a line like :

 if (!ns4) document.write('<td>the stuff that puts in the numbers</td>');

This says, “If this is not a Netscape 4 browser, write the code that puts
in the navigation element.” The variable ns will be true if the earlier code
determined that it was a Netscape 4 browser being used, and false otherwise.
Remember that this code must go between <script> and </script> tags.

Except for the part of the script that determines the type of browser being
used, the Netscape code is fairly simple. If you want to avoid the complexities
involved in determining the browser being used, use one of the browser
sniffer packages available for free on the Web, incorporating the software
into your page using JavaScript statements similar to those shown in the
section “More Accurate Browser Detection” on page 36.

Summary

Here are the things you should remember from this chapter:

JavaScript’s tools for identifying a visitor’s browser (navigator.appName,
navigator.appVersion, and navigator.userAgent)

How if-then, if-then-else, and if-then-else-if statements work

How Boolean expressions work

How to redirect your visitors to other web pages

How to import JavaScript from another file

Did you get all that? If so, here’s an assignment for you.

Assignment

Write a web page that asks for a visitor’s name. If the visitor is someone you
like, send him to your favorite page. If it’s someone you don’t know, send
him to a different page. And if it’s someone you don’t like, send him to yet
another page.

W O R K I N G W I T H R O L L O V E R S

You’ve seen rollovers a million times.
You mouse over an image, and the image

changes. You mouse off the image, and the
image changes back to its original state. Rollovers

are an easy way to make your site more interactive.
This chapter will show you how to create a good rollover. This involves:

Telling JavaScript to detect the mouse event that will trigger an
image swap

Telling JavaScript which of several images to swap in, based on the
mouse event

Replacing the old image with a new one

I’ll also teach you a new way to detect which browser a visitor is using.

52 Chapter 4

A Real-World Example of Rollovers

To begin, let’s take a look at rollovers in action. Tin House (http://www
.tinhouse.com), one of my favorite literary journals, has a little house on its
home page that helps you navigate the site. When you first come to the page,
all the lights in the house are off (Figure 4-1); rolling over different parts of the
house lights those areas up (Figure 4-2). It may be a little silly, but I like it.

Figure 4-1: Tin House home page before mousing over the house

Figure 4-2: Tin House home page with mouse over the house

The Book of JavaScript home page also has a relatively straightforward and
uncomplicated implementation of an image swap. If you mouse over the
graphic that says Turn it over! the image of the front cover of the book will

Working wi th Rol lovers 53

change to show the back of the book (see Figures 4-3 and 4-4). Mouse off the
Turn it over! image again and the book image switches back to the front cover.

There are many ways to script a rollover. Because rollovers don’t work in
old browsers, or when people turn JavaScript off, creating them also involves
browser detection, so in this chapter you’ll learn more ways to tailor JavaScripts
to the visitor’s browser.

You’ll also learn how quotation marks are handled in JavaScript and how
the hierarchical framework of a web page, known as the Document Object
Model (DOM), is reflected in JavaScript syntax.

Triggering Events

So far all the JavaScript we’ve seen is triggered when a web page loads into a
browser. But JavaScript can also be event driven.

Event-driven JavaScript waits for your visitor to take a particular action,
such as mousing over an image, before it reacts. The key to coding event-
driven JavaScript is to know the names of events and how to use them.

Event Types
With JavaScript’s help, different parts of your web page can detect different
events. For example, a pull-down menu can know when it has changed (see
Chapter 7); a window when it has closed (see Chapter 5); and a link when a
visitor has clicked on it. In this chapter I’ll focus on link events.

A link can detect many kinds of events, all of which involve interactions
with the mouse. The link can detect when your mouse moves over it and when
your mouse moves off of it. The link knows when you click down on it, and
whether, while you’re over the link, you lift your finger back off the button
after clicking down. The link also knows whether the mouse moves while
over the link.

Figure 4-3: An image from the Book of
JavaScript home page before mouseover

Figure 4-4: The same image after
mouseover

54 Chapter 4

Like the other kinds of interactions that we’ll cover in later chapters, all
of these events are captured in the same way: using an event handler.

onClick

Figure 4-5 shows the basic format of a link that calls an alert after a visitor
clicks it.

Before adding JavaScript:

Visit the Book of JavaScript
website

After adding JavaScript:

<a href = "http://www.bookofjavascript.com/"

onClick = "alert('Off to the Book of JavaScript!');">Visit the Book of
JavaScript website

Figure 4-5: A link that calls an alert

Try putting the link with the onClick into one of your own web pages.
When you click the link, an alert box should come up and say Off to the Book
of JavaScript! (Figure 4-6). When you click OK in the box, the page should
load the Book of JavaScript website.

Figure 4-6: The event-driven “Off to the Book of JavaScript!” alert box

Notice that, aside from the addition of onClick, this enhanced link is
almost exactly like the normal link. The onClick event handler says, “When
this link is clicked, pop up an alert.”

onMouseOver and onMouseOut

Two other link events are onMouseOver and onMouseOut. Moving the mouse over
a link triggers onMouseOver, as shown in Figure 4-7.

board

Figure 4-7: onMouseOver

Working wi th Rol lovers 55

As you can see, moving the mouse over the link triggers onMouseOver. The
code for onMouseOut looks like the onMouseOver code (except for the handler
name) and is triggered when the mouse moves off of the link. You can use
onMouseOut, onMouseOver, and onClick in the same link, as in Figure 4-8.

<a href = "#"

onMouseOver = "alert('Mayday! Mouse overboard!');"

onMouseOut = "alert('Hooray! Mouse off of board!!');"

onClick = "return false;">

board

Figure 4-8: onMouseOut, onMouseOver, and onClick in the same link

Mousing over this link results in an alert box showing the words
Mayday! Mouse overboard! (Figure 4-9). Pressing ENTER to get rid of the first
alert and moving your mouse off the link results in another alert box that
contains the words Hooray! Mouse off of board!! If you click the link instead of
moving your mouse off it, nothing will happen, because of the return false;
code in the onClick.

Figure 4-9: An alert box produced by
mousing over a link

onMouseMove, onMouseUp, and onMouseDown

The onMouseMove, onMouseUp, and onMouseDown event handlers work much like
the others. Try them yourself and see. The onMouseMove event handler is called
whenever the mouse is moved while it is over the link. The onMouseDown event
handler is triggered when a mouse button is pressed down while the mouse is
over a link. Similarly, the onMouseUp event handler is triggered when the mouse
button is lifted up again. An onClick event handler is triggered whenever an
onMouseDown event is followed by an onMouseUp event.

Quotes in JavaScript

This example also demonstrates a new wrinkle in JavaScript syntax. Inside
the double quotes of the onClick (Figure 4-8) is a complete line of JavaScript,
semicolon and all. In previous chapters, we’ve placed all of our JavaScript
between opening <script> and closing </script> tags. The only exception to

56 Chapter 4

this rule is when JavaScript is inside the quotes of an event. Your browser will
assume that anything within these quotes is JavaScript, so you shouldn’t put
<script> and </script> tags in there.

Also note that the quotes in the alert are single quotes ('). If these were
double quotes ("), JavaScript wouldn’t be able to figure out which quotes go
with what. For example, if you wrote

onClick = "alert("Off to the Book of JavaScript!");"

JavaScript would think that the second double quote closed the first one,
which would confuse it and result in an error. Make sure that if you have
quotes inside quotes, one set is double and the other is single.

Apostrophes can also pose problems. For example, let’s say you want the
alert in Figure 4-7 to say

Here's the Book of JavaScript page. You're gonna love it!

You would want the JavaScript to resemble this:

onClick = "alert('Here's the Book of JavaScript page. You're gonna love it!');"

Unfortunately, JavaScript reads the apostrophes in Here's and You're as
single quotes inside single quotes and gets confused. If you really want those
apostrophes, escape them with a backslash (\), like this:

onClick = "alert('Here\'s the Book of JavaScript page. You\'re gonna love it!');"

Putting a backslash before a special character, such as a quote, tells
JavaScript to print the item rather than interpret it.

Clicking the Link to Nowhere

You may have noticed that the links in Figures 4-7 and 4-8 have an unusual
form for the href attribute:

This hash mark (#) in an href means, “Go to the top of this page.” I’ve
included it there because most browsers expect something to be inside the
quotes after the href, usually a URL. In Figure 4-5, for example, the tag is

In HTML, href is a required attribute of the anchor (<a>) tag, or link.
href is an abbreviation for hypertext reference, and it’s required because, as
far as HTML is concerned, the whole purpose of a link is to send the user

Working wi th Rol lovers 57

somewhere else when the link is clicked, so the browser needs to be told
where to go. Usually that’s another page, but in this case you are not trying
to go anywhere. I might have just put nothing inside the quotes (href = ""),
but different browsers will do different things in that case, and it’s usually
something weird. Give it a try in your favorite browser. To avoid weird
behaviors, it’s best to put the # sign inside an href when you don’t want the
link to go anywhere when clicked.

The link in Figure 4-8 had a second way of ensuring that the link didn’t
go anywhere when clicked: onClick = "return false;". Placing return false; in
the quotes after an onClick tells JavaScript to prevent the browser from follow-
ing the URL inside the link’s href. This can be quite useful for dealing with
people who have JavaScript turned off in their browsers. For example, if
someone with JavaScript turned off clicks the link in Figure 4-10, the browser
will ignore the onClick and happily follow the URL inside the href. This
URL might go to a web page that describes the wonders of JavaScript and
tells the user how to turn JavaScript on. People who already have JavaScript
turned on will be treated to the contents of the onClick. They will see an alert
box, and then the return false inside the onClick will prevent the browser
from following the URL in the href. Although very few people turn JavaScript
off (fewer than 1 percent of browsers), it never hurts to take them into
consideration.

<a href = "please_turn_js_on.html" onClick =

"alert('I\'m glad you have JavaScript turned on!'); return false;">Click me

Figure 4-10: Links for people with JavaScript turned off

More Interesting Actions

You can do more with event handlers than simply triggering alert boxes.
Figure 4-11, for instance, uses an event handler to customize a page’s
background color.

<a href = "#"

onClick = "var the_color = prompt('red or blue?','');

window.document.bgColor = the_color;

return false;">

change background

Figure 4-11: Customizing background color

When you click this link, a prompt box asks whether you want to change
the background to red or blue. When you type your response, the background
changes to that color. In fact, you can type whatever you want into that prompt
box, and your browser will try to guess the color you mean. (You can even do
a kind of personality exam by typing your name into the prompt and seeing
what color your browser thinks you are. When I type thau into the prompt,
the background turns pea green.)

58 Chapter 4

This example demonstrates two new facts about JavaScript. First, notice
that the onClick triggers three separate JavaScript statements. You can put as
many lines of JavaScript as you want between the onClick’s quotes, although if
you put too much in there, the HTML starts to look messy.

Second, notice that you can change the background color of a page by
setting window.document.bgColor to the color you desire. To make the back-
ground of a page red, you’d type:

window.document.bgColor = 'red';

In the example, we’re setting the background color to any color the user
enters into the prompt box. I’ll say more about window.document.bgColor soon.

Swapping Images

Using JavaScript, you can change or swap images on your web pages, making
buttons light up, images animate, and features explain themselves. Before
you tell JavaScript to swap an image, you have to tell it what image to swap
by naming the image. Figure 4-12 shows you how.

Before JavaScript:

After JavaScript:

Figure 4-12: Naming an image

In this example, I’ve put an image of a happy face on the page and
named it my_image.

NOTE You can name an image whatever you like, but the name can’t contain spaces.

Once you’ve named an image, it’s easy to tell JavaScript to swap it with a
new one. Let’s say you have an image named my_image. To create an image
swap, tell JavaScript you want to change the src of that image to another.gif:

window.document.my_image.src = "another.gif";

Figure 4-13 shows the code for a very basic page with an image and a
link; click the link, and the image changes to happy_face.gif (Figure 4-14).

<html><head><title>Simple Image Swap</title></head>

<body>

<a href = "#"

onClick = "window.document.my_image.src = 'happy_face.gif';

Working wi th Rol lovers 59

return false;">make my day!

</body>

</html>

Figure 4-13: JavaScript for a basic image swap

Figure 4-14: Swapping a sad face for a happy one

Working with Multiple Images

If you have more than one image on a page, you should give each one a
different name. Figure 4-15 has two images and two links. The first link
tells JavaScript to swap the image called my_first_image (the sad face) with
happy_face.gif. The second link tells JavaScript to swap the image called
my_second_image (a circle) with square.gif. The result is shown in Figure 4-16.

NOTE When using more than one image, you must name your images differently. If you
accidentally give two images the same name, the swap won’t work.

<html><head><title>Two Image Swaps</title></head>

<body>

<a href = "#"

onClick = "window.document.my_first_image.src = 'happy_face.gif';

return false;">make my day!

<a href = "#"

onClick = "window.document.my_second_image.src = 'square.gif';

return false;">square the circle!

</body>

</html>

Figure 4-15: JavaScript for swapping two images

NOTE Image swapping doesn’t work in browsers earlier than Internet Explorer 4.0 or
Netscape 3.0. Furthermore, if you’re trying to replace a small image with a bigger one,
or a big image with a smaller one, browsers earlier than Netscape 4.61 and Internet
Explorer 4.0 will squash or stretch the new image to fit the space the old one occupied.
Later versions of these browsers adjust the page to fit the bigger or smaller image.

60 Chapter 4

Figure 4-16: Swapping two images

What’s with All the Dots?

You may wonder why JavaScript refers to my_image as window.document.my_image
and not just as my_image. You may also wonder why you would use window
.document.my_image.src when you want to change the src of that image. In
short, what’s with all the dots?

The answer has to do with how your browser looks at your web page.
Figure 4-17 shows the hierarchical organization of a web page as

JavaScript understands it—through the Document Object Model (DOM).
At the top of the DOM is the window that contains the web page you’re view-
ing. That window contains the navigator, document, and location objects. Each
of these objects has a lot of information in it, and by changing one you can
change what happens on your web page.

The dots in a line of JavaScript separate hierarchical levels of objects.
When JavaScript sees a series of objects separated by dots, it goes to the
last object in the series. So, for example, the phrase window.location tells
JavaScript to find the location object inside the current window. Similarly, the
line window.document.my_image.src tells JavaScript to find the source file (src)
of the image named my_image within the document object in the current window.
The current window is the one in which the JavaScript is located.

The document Object

The document object lists all the images, links, forms, and other stuff on a
web page. To code an image swap, we must tell JavaScript to find the document
object in the window, then locate the image object we would like to change
in the document object’s list, and finally change the image’s src. In JavaScript
terms (where happy_face.gif is the image we’re swapping in), this is how
it looks:

window.document.my_image.src = "happy_face.gif";

Working wi th Rol lovers 61

Figure 4-17: DOM’s hierarchical organization

Object Properties

An object’s properties are the bits of information that describe the object, such
as its height, width, and src (the name of the file that the image displays).
Some properties, such as the src of an image, can be changed, and others
can’t. As we’ve seen, changing the src property of an image object changes
which file is displayed:

window.document.my_image.src = "happy_face.gif";

Other properties, like the image’s height and width, are read-only and
cannot be changed.

The document object contains the image objects, and it has its own proper-
ties. For example, the background color of the document object is called bgColor.
That’s why we could change the background color of our document using
window.document.bgColor = 'red'. The image and document objects are just two
of many objects we’ll be seeing throughout the book. Each JavaScript object
has its own set of properties. Appendix C provides a list of many JavaScript
objects and their properties.

THE CURRENT WINDOW

self, window,
parent, top

various
Window objects

navigator

Navigator object

frames[]

array of
Window objects

location

Location object

history

History object

document

Document object

Package

JavaPackage

object

elements[]

array of HTML
Form element
objects:

Button
Checkbox
FileUpload
Hidden
Password
Radio
Reset
Select
Submit
Text
Textarea

options[]

array of
Option objects

plugins[]

array of
Plugin objects

mimeTypes[]

array of
MimeType objects

forms[]

array of
Form objects

embeds[]

array of
JavaObject objects

applets[]

array of
JavaObject objects

images[]

array of
Image objects

anchors[]

array of
Anchor objects

mimeType[]

array of
MimeType objects

62 Chapter 4

Finally, Rollovers!

Now that we know how to tell JavaScript how to do an image swap and how
to trigger JavaScript based on a user event with onClick, onMouseOver, and
onMouseOut, we can create a rollover. Just stick an onMouseOver and onMouseOut
inside an image tag, like this:

<img src = "sad_face.gif" name = "my_first_image"

onMouseOver = "window.document.my_first_image.src = 'happy_face.gif';"

onMouseOut = "window.document.my_first_image.src = 'sad_face.gif';"

>

See how that works? When first loaded, the image shows the sad_face.gif
because that’s what the image tag calls.

<img src = "sad_face.gif" name = "my_first_image"...

Then, when the mouse moves over the image, the link around it cap-
tures the onMouseOver, and the image swaps to happy_face.gif, like so:

onMouseOver = "window.document.my_first_image.src = 'happy_face.gif';"

When the mouse moves off the image again, the link captures the
onMouseOut event, which causes JavaScript to swap sad_face.gif back into
the image:

onMouseOut = "window.document.my_first_image.src = 'sad_face.gif';"

Alternatively, the onMouseOut and onMouseOver could have gone inside an
HTML link, as we’ve done with onClick in earlier examples. Because there are
still a few people using browsers that don’t allow onMouseOut and onMouseOver
handlers inside tags, it’s not a bad idea to put them in a link surrounding
the image:

<a href = "#"

onMouseOver = "window.document.my_first_image.src = 'happy_face.gif';"

onMouseOut = "window.document.my_first_image.src = 'sad_face.gif';">

Image Preloading

That’s pretty much all there is to your basic image swap. As usual, there’s
something that makes the process a little more difficult. When you do an
image swap as I’ve described, the image that’s swapped in downloads only

Working wi th Rol lovers 63

when your visitor mouses over the image. If your network connection is
slow or the image is big, there’s a delay between the mouseover and the
image swap.

The way around this potential download delay is to preload your
images—grabbing them all before they’re needed and saving them in the
browser’s cache. When the mouse moves over a rollover image, the browser
first looks to see whether the swap image is in its cache. If the image is there,
the browser doesn’t need to download the image, and the swap occurs
quickly.

There are hundreds of image preloading scripts, and they’re all basically
the same. Rather than write your own, you can download one of the free ones
and paste it into your page (Webmonkey has a good one at http://www
.hotwired.com/webmonkey/reference/javascript_code_library/wm_pl_img).
Let’s go over the basics of how preloads work so you’ll recognize them when
you see them.

There are two parts to a preload. First, you create a new image object.
The line

var new_image = new Image();

creates a new image object that has no information. It doesn’t have a GIF or
JPEG associated with it, nor does it have a height or width. If you know the
height and width of the image, you can do this:

var new_image = new Image(width, height);

Giving JavaScript information about the size of the image helps the
browser allocate memory for the image; it doesn’t have much impact on
how users experience your web page.

Once you’ve created this new object,

new_image.src = "my_good_image.gif";

forces the browser to download an image into its cache by setting the image
object’s src. When the image is in the browser’s cache, it can be swapped for
another image without any download delays. Figure 4-18 incorporates a
preload with the rollover we saw in the last example.

<html><head><title>Preloaded Rollover</title>

<script type = "text/javascript">

<!-- hide me from older browsers

var some_image = new Image();

some_image.src = "happy_face.gif";

// show me -->

</script>

64 Chapter 4

</head>

<body>

<img src = "sad_face.gif" name = "my_first_image"

onMouseOver = "window.document.my_first_image.src = 'happy_face.gif';"

onMouseOut = "window.document.my_first_image.src = 'sad_face.gif';">

</body>

</html>

Figure 4-18: Image preload and rollover

How the Tin House Rollovers Work

At the beginning of the chapter, I mentioned the home page of Tin House.
Its image swap JavaScript is quite simple and will give you an idea of how
easy it is to add a little JavaScript to your site. The Tin House rollover involves
four images: the top, middle, left, and right parts of the bottom floor of the
house. These images are placed in an HTML table to create the complete
image of the house. Figure 4-19 shows you the (abbreviated) code for the
top floor.

 <a href = "general_info/submission.html"

 onMouseOver = "attic3.src='images/index/home_attic3b.gif';"

 onMouseOut = "attic3.src='images/index/home_attic3.gif';">

 <img src = "images/index/home_attic3.gif" name =
"attic3" width = "289" height = "68" border = "0" alt =
"General Information: Our history, our glory, and our guidelines.">

Figure 4-19: Rollover from the Tin House home page

This should look very familiar by now. Line describes the image. Notice
that Tin House puts width, height, border, and alt attributes inside their image
tag as well as the name attribute used to do the image swap. The height and
width attributes tell web browsers how much space to reserve for the image.
The alt attribute does two important things. First, some browsers don’t
display images. This might be because the person is on a slow connection
and has turned images off in their browser, or because they using are a
device that can read web pages to them, or perhaps it’s a search engine
visiting your web page, looking for stuff to add to its index. The alt attribute
in an image provides information about that image in all of these situations.
In addition, the alt attribute is used by some browsers even when images are
being displayed. Recent versions of Internet Explorer, for example, will display
the alt text in a yellow box when you leave your mouse over an image for
more than a second or two.

Getting back to the JavaScript, you can see that Tin House has put its
onMouseOver () and onMouseOut () inside an HTML link (). As we’ve seen,
the onMouseOver and onMouseOut event handlers can go either in the image
itself, or in a link surrounding the image, as Tin House has done.

Working wi th Rol lovers 65

Summary

In this chapter you’ve learned:

How to trigger events, such as onMouseOver and onMouseOut

How to nullify a link with return false inside onClick

How to change the background color of a page

How to swap images

How to preload images so that they’ll swap in more quickly

How the DOM uses dots to separate objects into hierarchies

Now that you know the basics of image swapping, you can perform lots of
tricks. You can make an image vanish by swapping in one that’s the same
color as the page background. You can make images composed of explan-
atory text and place them next to the feature they describe. There’s no end
to the fun you can have with image swaps.

As always, we’ll be revisiting many of these points in later chapters, so
you’ll become more and more familiar with them. To make sure you under-
stand how they work, try the following assignment.

Assignment

Figures 4-20 and 4-21 show you a page which does two image swaps simul-
taneously. Notice that mousing over the text on the bottom of the screen
changes the words from turn over to turn back and swaps the book’s front
cover with its back cover. The words, like the book covers, are images, and
they are swapped using the techniques we’ve learned in this chapter. Your
assignment is to write a similar page where mousing over one image causes
two images to change.

Figure 4-20: The Chapter 4 assignment
page before the rollover

Figure 4-21: The Chapter 4 assignment
page after the rollover

	The Book of JavaScript, 2nd Edition
	Contents
	Introduction
	Chapter 1: Welcome to JavaScript!
	Chapter 2: Using Variables and Built-in Functions to
	Chapter 3: Giving the Browsers What They Want
	Chapter 4: Working with Rollovers
	Chapter 5: Opening and Manipulating Windows
	Chapter 6: Writing Your Own JavaScript Functions
	Chapter 7: Providing and Receiving Information with Forms
	Chapter 8: Keeping Track of Information with Arrays and Loops
	Chapter 9: Timing Events
	Chapter 10: Using Frames and Image Maps
	Chapter 11: Validating Forms, Massaging Strings, and
	Chapter 12: Saving Visitor Information with Cookies
	Chapter 13: Dynamic HTML
	Chapter 14: Ajax Basics
	Chapter 15: XML in JavaScript and Ajax
	Chapter 16: Server-Side Ajax
	Chapter 17: Putting It All Together in a Shared To Do List
	Chapter 18: Debugging JavaScript and Ajax
	Appendix A: Answers to Assignments
	Appendix B: Resources
	Appendix C: Reference to JavaScript Objects and Functions
	Appendix D: Chapter 15’s Italian Translator and Chapter 17’s To Do List Application
	Index

